US009405542B1

a2z United States Patent (10) Patent No.: US 9,405,542 B1
Schuttenberg et al. (45) Date of Patent: Aug. 2, 2016
(54) METHOD AND APPARATUS FOR UPDATING 6,263,416 B1* 7/2001 Cherabuddi GO6F 9/30105
A SPECULATIVE RENAME TABLE IN A 6,622,237 B1* 9/2003 Kell GO6F ;/1324;71
,622, ellercoovvvnn.
MICROPROCESSOR 712214
6,651,161 B1* 11/2003 Keller G60F 9/3834
(71) Applicant: Marvell International Ltd., Hamilton e 712/216
(BM) 6,694,424 B1* 22004 Keller ...ooomveccc... GO6F 9/3834
712/216
(72) Inventors: Kim Schuttenberg, Gilbert, AZ (US); 2005/0055541 A1* 3/2005 Aamodt GOGF 2/1 320/5(1);
Sridharan Balasubramanian, Chandler, 2008/0114966 Al* 5/2008 Begon GO6F 9/3824
AZ (US) 712/217
2008/0148022 Al* 6/2008 Piryccccocevvevennn GOGF 9/384
(73) Assignee: Marvell International LTD., Hamilton 712/217
(BM) 2012/0005444 Al* 12012 Rupley ...ccceevvenne GOG6F 9/3857
711/166
(*) Notice: Subject to any disclaimer, the term of this 2013/0I51819 AL* 62013 Piry o G076 1F2/92/?§
patent is extended or adjusted under 35
U.S.C. 154(b) by 637 days. * cited by examiner
(21) Appl. No.: 13/849,120
Primary Examiner — Michael Sun
(22) Filed: Mar. 22,2013
Related U.S. Application Data 7 ABSTRACT
(60) Provisional application No. 61/620,917, filed on Apr. A processor including architectural registers used to execute
5, 2012. instructions and a renaming module to rename the architec-
(51) Int.Cl tural registers to physical registers in response to receiving
Gn 0;$F 9 /38 (2006.01) instructions. A first table stores pointers to the physical reg-
GO6F 9/30 (200 6. o1) isters storing data generated in response to the processor
(52) US.Cl ’ completing execution of instructions. A second table stores
CPC) GOGF 9/30098 (2013.01): GOGF 9/384 pointers to the physical registers storing data to be generated
"""""" (2013.01); GOGF 9/3855 (2013.01) by instructions received but not executed by the processor and
(58) Field of Classification Sear;h ’ used by instructions to be received by the processor. An
None execution module executes instructions and discards one or
See application file for complete search history. more instructions received but not executed by the processor
in response to an event. An updating module updates pointers
(56) References Cited in the second table in response to the event. The updated

U.S. PATENT DOCUMENTS

pointers are generated based on pointers stored in the first
table at a time of occurrence of the event and instructions not
discarded by the execution module.

5,852,726 A * 12/1998 Lin ... GO6F 9/30036
712/200
5,944,810 A * 81999 Cherabuddi GO6F 9/30105
712/217 14 Claims, 16 Drawing Sheets
)'—201
Processor
f208)«—212)'—204
Speculative Updating Architectural
RAT Table Module RAT Table
206—_| “
Physical
Register Bank
f202
— R;’;Z’Sligg FIFO Buffer
214—/|
!
Execution j_210
Module

US 9,405,542 B1

Sheet 1 of 16

Aug. 2, 2016

U.S. Patent

Vi

Old

e y

9|kl uone|suel]
ssaJppy JoisiSay
[BIN3D3YIYDIY

¢l
4l
T4
0/

ajnpow
uonndaxy |
o_‘NIW T#'1d Aow
erlﬂ
- [——
1d<-04 T#04 Aow
s|npow
= Sujweuay
031} ULIBpI0aY 5
Bl ozt
/d
od 80¢
Y 4
qd €l
d z
ed T Jr
002
48] 04
Td
g 3|qel uone|sues |

0 ssaUppy 4935180y

@ONI\

Jueg
J=1s13ay |eaisAyd

aAlle|Ndadg

oswiL

US 9,405,542 B1

Sheet 2 of 16

Aug. 2, 2016

U.S. Patent

dl "Old

¥0¢

3|gel uone|suel]
ssalppy Jo1sI180y
|e4n1091YdIY

€l
e
14
04

Td<-04

T#17d Aow
3/npow
uoJIN2aXx3 -
o_‘NI\ﬂ c#'zd Aow
1474
-t j—
70<-04 €404 oW
3|npoul
3 Bulweusay
041} 8ULIDPIOD v
41} BULISPIODY $ 20z
,d
o ﬂwom
cd Y e
wd Z
ed T4
[4e 1d oJ
1d M
00c
od d|gel uone|suel]

womlﬂ

Jueg
19315189y |eal1sAyd

SseJppy Jo1sI8ay

anie|ndadsg
TawlL

US 9,405,542 B1

Sheet 3 of 16

Aug. 2, 2016

U.S. Patent

J1 OId

Td<-0d

€l
e
Td
od

v0Z—

d|ge] uone|suel]
ssa.ppy Ja3siSay
|edn3oaIydIY

1235183y |BdISAYd

e#‘zd now
T#'Td Aow
ajhpow
Ve uoINdax3 -
oFNIW zd‘ed aow
20¢c
v e RS
3|3
..W\. m “ d<-z4
gd<-¢ 04‘z4 now
a|npowl
ﬂ Suiweuay
0414 Buluaploay 3)
w
P
NQ 1l
od 80z |©
v\
qd €l
d 2]
ed T4
zd zd o4
> 1 1d
od 9|gel uolie|sued|
SsaJppy J23s18aY 00¢c
wowlﬂ jued 9AlendadS

Zawll

US 9,405,542 B1

Sheet 4 of 16

Aug. 2, 2016

U.S. Patent

ai

Old

<l
-

ystuly

zd‘ed now

e#‘zd now

3lhpow
Uo13Nd2x3 -

1474

o_\NI\ﬂ

v0c—

Td

9|ge] uoliejsuel|
SSaUppY Ja3s18aY
[EJNIIDUYDIY

zd<-0l

gl
P4
L
04

¢d<-Qd
cd<-zd

A

0414 SullapJodY

.d

ad

cd

+d

ed

zd

Ld

od

womlh

Jueg

1915133y |e2ISAUd

a|npowl
Sulweuay

NONI\

80¢
v §

¢l
¢d A
[
zd ol

°|gel uolie|sued] MOON

ssauppy Jo1s189Yy
dAllE|INJAdS

gawiL

US 9,405,542 B1

Sheet 5 of 16

Aug. 2, 2016

U.S. Patent

v0C

41 "Old

gd<-gd

el

I4

[

zd

o4

d|del uojie|sued|
Ss2JppYy Jo15150Yy
[BJNI23IYD.IY

¢d‘ed now
9|npowl
Ysiun uonnIdXy f——
i i
o_\NI\ﬂ
1474
\ €
"
3 < R
w
3|npow
Suiweusay
0}1} BUlJopIo oy
NONI\
2d
80¢

9d \ 4

cd el

vd cd T
»- € muQ 4

€ zd zd 0J
1 1d Jr
d|del uone|suelL 002
od ssaJppy 4915183y
@ONI\ yueg aAl1eN23dg

J91s189Yy |ea1sAyd

owll

US 9,405,542 B1

Sheet 6 of 16

Aug. 2, 2016

U.S. Patent

¥0c

di

Old

zd‘ed now
dlhpow
uo13Nd9X3 -

o_‘Nl\ﬂ

vie

ed

zd

d|ge] uone|suel]
ssoJppYy J93sI89Y
[BJN1D81IY2IY

¢l
rA
L
04

A

041 SulIBpIOY

2d

od

cd

+d

od

zd

Ld

od

@oml\ﬁ Aueq

1915189y |e21sAyd

d|npow
sulweusy

Noml\ﬁ

/I 80¢C

cJ
cd A
L4
zd o4

3|qe] uone|suel]
SS2UppPY J91sI80y
aAle|nJads

Looe

¥ oWl

US 9,405,542 B1

Sheet 7 of 16

Aug. 2, 2016

U.S. Patent

Ve

Old

ZHod now
T#/d Aow
baq
o#0d row
[5T]'sd 4p]
Snpow
uoIINIBX3 -t

Joolsal

¥0C— | J

cd

zd

9|geL uone|suel|
ssa4ppy J31sI180Y
|edN32231Ydly

¢l
Z
L
o

qd<-zd
od<-0J
baq

A

041} BullapJoay

2d

od

cd

¥d

ed

zd

1d

od

90z HHee

13315189y [e2IsAyd

Y

3npowl
Suiweuay

Nowl\ﬂ

Awom

/d ¢l
9d a2

1
od 0d

dldeL uolie|sued]
ssa4ppy Jo1si8ay
dAle|noadg

ooz

[48831584] BWIL

US 9,405,542 B1

Sheet 8 of 16

Aug. 2, 2016

U.S. Patent

ga¢ "Old

o#‘0d Aow

qT=‘gd Jp|
9|npowl

uoJIN29x3

A

¥0e—+ y

cd

zd

9|qe| uole[suel|
ssaJppy J9315183y
[E4N3083YdUY

¢l
zl
L
0!

gd<-zJ
0d<-04
(300u400u1)bag

20z

A

YENEGED

2d

od

Gd

+d

ed

zd

1d

od

ooz ed

1915139y [ed1sAyd

l—————
ZJ4'€d now

3|npow
Sulweuay
A

802 =
4 4 5
/d c1|®
od 4
14 JI
od 0l 002

9|ge uone|sued]
ssalppy 491si189Y

aAe|ndadg
T+[4ov1584] swiL

US 9,405,542 B1

Sheet 9 of 16

Aug. 2,2016

U.S. Patent

Ve "Old

o#‘0d Aow

ST="qd up|
3hpow

uoI1n29x3

Gd<-zd
od<-04
(302uu00ur)bag

| ez

A

041} Buliapioay

9|0e | uone|suell
SsaJppy 4915139y
[e4N32331Yddy

v0c y
¢l
ed cl
L
zd ol

¢ 21l Aow

alhpowl
3ulweuay
A

802 g
1]
v\ 4

/d £l

od ¢l

I_I

a|hpow
Suirepdn

<-¢l
G<-¢d
<-d
0d<-04

NFNIW

Y

14
d 1 Jl
0 0 102

9|qeL uone|sued]
SS2UppPY 4935189y

onienIads (pI1ng@. 3j2hd 3|8uUIS YIIM)

T+[4991504] WL

US 9,405,542 B1

Sheet 10 of 16

Aug. 2, 2016

U.S. Patent

g¢ "Old

o#'0d now
ST='sd Jp|
3|npow
UonNdaX3 |a———
dzd now
oS 5
dsam? 20z
o
(0]
2
NEIE
152 - D a—
&3 3 Ld<-gd Zi‘gd now
8 a|npow
= Sujweusy
o041} Suluaploay M.\g A
©
~
goz |W
v0eH gy L / 4 &
€l €l
d | qd 4l
H LJ
zd 0l od o

d|ge] uole|suel|
SsaJppy J9315189Yy
|eJn32931Y2dy

9|qe] uolie|sued]
ssaJppy Jo15189Yy
aAlle|Ndads

Ui

(pIIngaJ 3124 3|8uls y1IMm)

¢+[4981584] BWIL

US 9,405,542 B1

Sheet 11 of 16

Aug. 2, 2016

U.S. Patent

702

V¥ 'Old

0#'0d Aowl

ST=‘qd Jp|
a|npowl

UoJ3N23Xx3

A

gd<-zd

A

od<-Qu4
(1021u00uU1)baq

0414 BullapJloay

a|hpow
Sulweuay

/

A

g0z~
A Y 4
€l ,d gl
¢d Zl 9d 2l
L o]
<-£d
zd o cd<-zl od 0l
3|eL uone|suel| <14 a|qel uoje|suel)
Z2d<-04

ssaJUppy 19315189y
|edn3aa3YoIY

SSaJppYy 4935159y
dAl3e|ndadg

A/

9d=gd

c0e
|

-«

ZA'€l1now

soz

(pIingaJ 8242 B1diNW Yaim)
T+[4991504] W]

US 9,405,542 B1

Sheet 12 of 16

Aug. 2, 2016

U.S. Patent

av "Old

o#'0d now

GT='qd Jp|
a|npow
uoIIN2ax3

Y02 y

¢d

zd

d|ge] uonie[suel]
ssaJppy Jo3siS8oy
[B4N3DDNYIY

¢l
Z
L
o

Ggd<-z4

od<-0d
(309uu00un)baq
A

0414 SuLlapJoay

gd<-zd

3|npouw

3uiweuay

'V

80¢
"\
¢l
¢d ¢l
[
zd o4
3|gel uone|sued]
ssa.lppy JoisiSey
3Al1e|noadg

gd=z4

coc
| S

-«

Zd‘gd now

oz

(PIINgR4 32Ad B3 NW Yaim)
T+[49931594] swL

US 9,405,542 B1

Sheet 13 of 16

Aug. 2, 2016

U.S. Patent

Jv "Old

040d Aow

ST='qd Jp|
3|npouwl

uol3ndaxy

A

.vONI.~ L

¢d

zd

9|qe] uone|sued]
ssaJppYy Jo31si8ay
[BN331IY2UY

€l
Pl
L
ol

gd<-zJ

A

0d<-Qu
(13u00u1)bag

0}l 8uliapJoay

0d<-QJ

3npow
Suiweuay

c0g
| S

o
Lot

Y
¢l
sd 4
]
zd 0J

s|geL uone|sued]
SsaJppYy 4915189y
anlle|ndadg

Lioe

(plingaa 3pA 3jdinw yum)
Z+[4993594] WL

US 9,405,542 B1

Sheet 14 of 16

Aug. 2, 2016

U.S. Patent

av Old

¥0Z— y

cd

zd

3|qe] uone|sued]
sseJppy Ja3si8ay
[eJn3021Y2IY

[
z
L
04

0o#'0d now
ST='9d Jp|
a|npow
uol3ndaxy <
oFNR qd’zd now
v_\NIN HNON
o
(2]
2
MES
Y1¥18 - «——
G| o w 1d<-¢4 Zi‘gd nowl
aQ 3|npow
= Ww Suiweuay
0}1J SUIIopJ0 oY .W_

goz W
i 4 &
¢l
gd Zl
y by
o ol L0C
9|geL uone|sued]
SsUppy 49315189y
dAlle|ndadg

c+[4991504] Wi

US 9,405,542 B1

Sheet 15 of 16

Aug. 2, 2016

U.S. Patent

G 'Old

SINPO P
ormlﬂ uonnoaxy [
A
A 4
/\—¥l2 SINPOA
— ‘eung Odid e o
A
NONI\ﬂ
yueg Jsisibey |
Y7l reoskug [
90z
A 4 A 4 A 4 A 4
s|qel 1vd — SINPO s|qel 1vd
[e1nj08)yoIy "l Bunepdn aAneNoadsg
vONI\ﬂ N_‘leﬂ wONI\ﬂ
losseo0.d
_‘ONIW

U.S. Patent Aug. 2, 2016 Sheet 16 of 16 US 9,405,542 B1

‘)fBOO
(Start)

>
>
A

4

Rename architectural registers to physical)'_302
registers when instructions are received

A 4

After renaming, queue instructions for)'_304
execution in FIFO

Y

Store, in architectural RAT, pointers to physical j_306
registers storing data generated by retired instructions

A 4

Store, in speculative RAT, pointers to physical registers storing data j—308
to be generated by instructions received but not yet retired for use by
new instructions

310

Event occurred?

F

Discard one or more instructions in)'_312
queue

A 4

Update pointers in speculative RAT table using pointers in j_314
architectural RAT and non-discarded instructions in queue

A 4
Execute new instruction using updated pointers j_316

in Speculative RAT table
]

FIG. 6

US 9,405,542 B1

1
METHOD AND APPARATUS FOR UPDATING
A SPECULATIVE RENAME TABLE IN A
MICROPROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This disclosure claims the benefit of U.S. Provisional
Application No. 61/620,917, filed on Apr. 5, 2012. The entire
disclosure of the application referenced above is incorporated
herein by reference.

FIELD

The present disclosure relates generally to high-perfor-
mance microprocessor logic design and more particularly to
updating a speculative rename table to simplify high-perfor-
mance microprocessor logic design.

BACKGROUND

The background description provided herein is for the pur-
pose of generally presenting the context of the disclosure.
Work of the presently named inventors, to the extent the work
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time of filing, are neither expressly nor impliedly admitted
as prior art against the present disclosure.

Many modern microprocessors can execute multiple
instructions at once. The instructions typically access archi-
tectural registers to perform respective operations. The num-
ber of architectural registers, however, is generally limited.
Accordingly, if multiple instructions need to write to the same
architectural register, the processor may need to serialize the
instructions, which can adversely affect the performance of
the processor.

One way to solve this problem is to use register renaming,
where each time an architectural register is written to, the
architectural register is mapped to a different physical register
with a different name. A table shows which architectural
register references which physical register at a given time.

SUMMARY

A processor comprises a plurality of architectural registers
of'the processor, where the architectural registers are used by
the processor to execute one or more instructions. A renaming
module is configured to rename one or more of the architec-
tural registers to one or more physical registers in the proces-
sor in response to the processor receiving a plurality of
instructions for execution. A memory comprises a first table
configured to store pointers to the physical registers storing
data generated in response to the processor completing execu-
tion of one or more instructions, and a second table config-
ured to store pointers to the physical registers storing data to
be (i) generated by a set of instructions received but not
executed by the processor and (ii) used by instructions to be
received by the processor. An execution module is configured
to execute the plurality of instructions, and discard one or
more instructions from the set of instructions received but not
executed by the processor in response to an event. An updat-
ing module is configured to update pointers in the second
table in response to the event. The updated pointers are gen-
erated based on (i) pointers stored in the first table at a time of
occurrence of the event, and (ii) one or more instructions from
the set of instructions not discarded by the execution module.

15

20

40

45

55

2

In other features, the execution module is configured to
execute an instruction subsequent to the event based on the
updated pointers.

In other features, the updating module is configured to
update the pointers in the second table in a time period equiva-
lent to one instruction cycle of the processor.

In other features, the updating module is configured to
update the pointers in the second table by (i) copying the
pointers from the first table to the second table, and (ii)
updating the pointers copied into the second table based on
the one or more instructions from the set of instructions not
discarded by the execution module.

In other features, the processor further comprises a first-in
first-out memory configured to store instructions received but
not executed by the processor in an order in which the instruc-
tions are received by the renaming module.

In other features, the updating module is configured to
update the pointers in the second table using the one or more
instructions from the set of instructions not discarded by the
execution module in the order in which the instructions are
stored in the first-in first-out memory.

In other features, the updating module is configured to
update the pointers in the second table using the one or more
instructions from the set of instructions not discarded by the
execution module in an opposite order in which the instruc-
tions are stored in the first-in first-out memory.

In still other features, a method comprises renaming one or
more of architectural registers of a processor to one or more
physical registers in the processor in response to the processor
receiving a plurality of instructions for execution, where the
architectural registers are used by the processor to execute
one or more of the plurality of instructions. The method
further comprises storing, in a first table, pointers to the
physical registers storing data generated in response to the
processor completing execution of one or more instructions;
and storing, in a second table, pointers to the physical regis-
ters storing data to be (i) generated by a set of instructions
received but not executed by the processor and (ii) used by
instructions to be received by the processor. The method
further comprises executing the plurality of instructions and
discarding one or more instructions from the set of instruc-
tions received but not executed by the processor in response to
an event. The method further comprises updating pointers in
the second table in response to the event, where the updated
pointers are generated based on (i) pointers stored in the first
table at a time of occurrence of the event, and (ii) one or more
instructions from the set of instructions not discarded.

In other features, the method further comprises executing
an instruction subsequent to the event based on the updated
pointers.

In other features, the method further comprises updating
the pointers in the second table in a time period equivalent to
one instruction cycle of the processor.

In other features, the method further comprises updating
the pointers in the second table by (i) copying the pointers
from the first table to the second table, and (ii) updating the
pointers copied into the second table based on the one or more
instructions from the set of instructions not discarded.

In other features, the method further comprises storing, in
a first-in first-out memory, instructions received but not
executed by the processor in an order in which the instruc-
tions are received.

In other features, the method further comprises updating
the pointers in the second table, using the one or more instruc-
tions from the set of instructions not discarded, in the order in
which the instructions are stored in the first-in first-out
memory.

US 9,405,542 B1

3

In other features, the method further comprises updating
the pointers in the second table, using the one or more instruc-
tions from the set of instructions not discarded, in an opposite
order in which the instructions are stored in the first-in first-
out memory.

Further areas of applicability of the present disclosure will
become apparent from the detailed description, the claims
and the drawings. The detailed description and specific
examples are intended for purposes of illustration only and
are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1A-1F show an example of a system for renaming
architectural registers of a processor according to the prior
art.

FIGS. 2A and 2B illustrate a state of a speculative register
address translation (RAT) table in the processor when an
unexpected event occurs during instruction execution.

FIGS. 3A and 3B show a method for updating the specu-
lative RAT table in a single instruction cycle of the processor
according to the present disclosure.

FIGS. 4A-4D show a method for updating the speculative
RAT table in multiple instruction cycles of the processor
according to the present disclosure.

FIG. 5 shows a processor configured to update the specu-
lative RAT table according to the present disclosure.

FIG. 6 shows a method for updating the speculative RAT
table according to the present disclosure.

In the drawings, reference numbers may be reused to iden-
tify similar and/or identical elements.

DESCRIPTION

One method used to optimize execution of an instruction
stream in a microprocessor is called register renaming. This
solves the problem of anti-dependency and write-after-write
data dependency cases. The problem is solved by assigning
different versions of the same register different physical loca-
tions and renaming which physical register maps to which
architectural register each time the register is written. In a
variant of register renaming called a physical register file, the
design disposes of the need to ever copy the data from a
renamed location to a fixed physical location, opting instead
to just update a pointer in a register address table.

A high-performance system will actually include two of
these tables (or one table with twice as many entries). One of
the tables is the architectural state of the register renaming (as
defined by all retired instructions), and the other table is the
speculative renaming state, which is identical to the architec-
tural state but as modified by all outstanding instructions. The
speculative state is used by new instructions to identify the
source fortheir data. This is illustrated by the sequence shown
in FIGS. 1A-1E (described in detail later), which show a
simplified system using a physical register file to rename four
architectural registers.

When an unexpected change of execution direction (e.g., a
mis-predicted branch or exception) occurs, some but poten-
tially not all of the outstanding operations will be discarded.
When this happens, the correct state of the speculative renam-
ing table would be the state of the architectural table plus the
influence of all of the outstanding instructions that were not
discarded. However, immediately following the discarding of
some of the outstanding instructions, the speculative table
incorrectly reflects the influence of the discarded instructions,
and any new instructions may then get wrong physical regis-

10

15

20

25

30

35

40

45

50

55

60

65

4

ter mapping, and hence wrong data. This is shown in FIGS.
2A and 2B, which are described in detail later.

This problem can be solved in many ways. The most basic
approach involves waiting for all outstanding instructions to
complete and retire, at which point the architectural renaming
table can simply be copied to the speculative table, since with
no outstanding operations, the two tables should be equiva-
lent. Another approach involves saving the state of the specu-
lative table at a defined set of key points (e.g., at branches that
could be mis-predicted), and then copying the saved state
back to the speculative renaming table.

Both these approaches have disadvantages. In the first
approach, the time spent waiting for operations to retire
would be better spent executing new instructions, and could
be quite long, depending on the instruction mix. In the second
approach, the amount of memory needed to save and restore
copies of the renaming table quickly grows unwieldy and
expensive in terms of area and power.

The present disclosure relates to methods for correcting the
speculative rename table that provides a much better balance
between performance and cost than the two approaches
described above. A first method according to the present
disclosure copies the architectural renaming table to the
speculative table, and then iteratively updates it with the
influence of all outstanding instructions that have not been
discarded in code order. Once all outstanding instructions
have been processed into the updated speculative rename
table, new instructions can be allowed into the system again.
While this method involves some waiting for the table to be
updated, unlike waiting for the instructions to finish, the wait
is known and much shorter than the first approach described
above. In many cases, the wait is short enough to end before
a first new instruction arrives to look up the speculative
rename table.

A second method according to the present disclosure
updates the table with the outstanding instructions in a reverse
order. Accordingly, an instruction may not have to wait for the
full table to be restored, as long as the entry needed by the
instruction has been updated. This method is feasible and
efficient because in most, if not all instruction set architec-
tures, the register values seen by an instruction are the result
of the next oldest instruction that updates the location.
Accordingly, if the instructions are processed to update the
speculative rename table in reverse order (youngest to oldest),
once an entry has been updated, the updated entry has a
correct value, and updates to the entry from an older instruc-
tion will be blocked.

In either method, the number of entries that can be pro-
cessed in a cycle may be variable or fixed, and may differ
depending on implementation. For example, FIGS. 3A and
3B (described in detail later) show an implementation that
processes all the outstanding entries in a single cycle while
FIGS. 4A-4D (described later in detail) show an implemen-
tation that processes one entry per cycle. A practical imple-
mentation may be in between these two implementations, for
example, processing 4 or 8 entries per cycle.

FIGS. 1A-1F show an example of a system for renaming
four architectural registers of a processor 200. The system
includes a renaming module 202, and architectural register
address translation (RAT) table 204, a physical register bank
206, a speculative RAT table 208, an execution module 210,
and a FIFO buffer 214. The system executes instructions of a
program code. The system does not execute the instructions
sequentially, that is, in the order in which they appear in the
program code, and yet provides results as if the instructions
are executed in the order in which they appear in the program
code.

US 9,405,542 B1

5

The architectural RAT table 204 stores pointers for archi-
tectural registers r0 through r3. A pointer for an architectural
register points to a physical register (any physical register
from p0 through p7) where data corresponding to the archi-
tectural register is stored. The data is generated by a retired
instruction. The speculative RAT table 208 stores pointers to
physical registers where data to be used by instructions that
are yet to be executed by the processor 200 is stored.

For example, FIGS. 1A and 1B show two operations that
write to the architectural register r0. In FIG. 1A, at time 0, a
command mov r0,#1 is received to write a value 1 to the
architectural register r0. Subsequently, in FIG. 1B, at time 1,
a command mov r0,#3 is received to write a value 3 to the
architectural register r0. In FIG. 1A, the renaming module
202 renames the architectural register r0 to the physical reg-
ister p1; and the execution module 210 executes a command
mov pl,#1 to write the value 1 into the physical register p1.

In FIG. 1B, the renaming module 202 renames the archi-
tectural register r0 to the physical register p2; and the execu-
tion module 210 executes a command mov p2,#3 to write the
value 3 into the physical register p2. In the speculative RAT
table 208, an entry for the architectural register r0 points to the
physical register p1.

In FIG. 1C, at time 2, an instruction mov r2,r0 is received.
The renaming module 202 renames the architectural register
r2 to the physical register p3, and the speculative RAT table
208 provides the value of the architectural register r0 stored in
the physical register p2 based on the renaming operation
performed immediately preceding the instruction mov r2,r0.
The command mov r0,#1 shown in FIG. 1A is completed (i.e.,
retired). Accordingly, the value 1 is written in the physical
register p1, and the pointer to the physical register p1 is stored
in the entry for the architectural register r0 in the architectural
RAT table 204.

In FIG. 1D, at time 3, the execution module 210 executes
the command mov p3,p2, which writes the value 3 in the
physical register p2. No new instructions are received in
FIGS. 1D-1F. In FIG. 1E, at time 4, the execution module 210
finishes the execution of the command mov p3,p2, and the
value 3 from the physical register p2 is written to the physical
register p3.

FIG. 1F shows the final state of the system when the execu-
tion of all three instructions shown in FIGS. 1A-1C is com-
pleted (i.e., the instructions are retired). Specifically, in both
the architectural RAT table 204 and the speculative RAT table
208, the architectural register r2 points to the physical register
p3 storing the value of 3, and the architectural register r0
points to the physical register p2 storing the value of 3.

FIGS. 2A and 2B illustrate the problem being solved by the
present disclosure. For example, in FIG. 2A, the FIFO buffer
214 contains five instructions that are currently outstanding
(i.e., instructions that are received, renamed, but not yet
retired). One of the outstanding instructions is a branch
instruction (e.g., branch if equal to beq). Suppose that the
branch instruction is mis-predicted (e.g., the branch is taken
instead of not branching). As a result, the two instructions
after the branch instruction (move p7,#1 and move p6,#2)
should not be executed following the branch instruction.
Instead, some other instructions should be executed follow-
ing the branch instruction.

In FIG. 2B, the two instructions after the branch instruction
are shown crossed out (i.e., deleted from the FIFO buffer
214). The speculative RAT table 208, however, still contains
pointers to the physical registers p6 and p7 stored in the
entries for the architectural registers r2 and r3, respectively,
since the physical registers p7 and p6 are speculatively
mapped to the architectural registers r2 and r3, respectively.

10

15

20

25

30

35

40

45

50

55

60

65

6

Accordingly, if a new instruction such as mov r3,r2 (shown in
FIG. 2B) is received, the speculative RAT table 208 will
provide the incorrect value of the architectural register r2 as
r2=p6. Instead, the new instruction should receive the correct
value for the architectural register r2 as r2=p5, which is the
result of the valid instruction immediately preceding the
branch instruction, but which is not yet in the architectural
RAT table 204 since the instruction is not yet retired.

One way to solve the problem (i.e., in the above example,
to get the architectural register r2 in the speculative RAT table
208 to point correctly to p5 before a new instruction is
received), is to wait until the instructions in the FIFO buffer
214 retire and then copy the contents of the architectural RAT
table 204 to the speculative RAT table 208. The present dis-
closure solves the problem without waiting for the instruc-
tions to retire as follows. FIGS. 3A-4D show a processor 201
according to the present disclosure.

FIGS. 3A and 3B show a method for updating the specu-
lative RAT table 208 in a single instruction cycle of the
processor. In FIG. 3A, an updating module 212 updates the
data in the speculative RAT table 208 using the data in the
architectural RAT table 204 and the instructions pending in
the FIFO buffer 214. Specifically, the updating module 212
generates the correct pointers that would have been stored in
the speculative RAT table 208 if the instructions pending in
the FIFO buffer 214 had retired. FIG. 3B shows the result
after updating the speculative RAT table 208 is complete.
Accordingly, in FIG. 3B, when a new instruction such as mov
r3,r2 is received, the speculative RAT table 208 provides the
correct pointer for the architectural register r2 as r2=p5.

FIGS. 4A-4D show a method for updating the speculative
RAT table 208 in multiple instruction cycles of the processor.
Specifically, in FIG. 4A, the contents of the architectural RAT
table 204 are initially copied into the speculative RAT table
208. Subsequently, as shown in FIGS. 4B and 4C, the con-
tents of the speculative RAT table 208 are updated based on
the instructions pending in the FIFO buffer 214.

Specifically, in FIG. 4B, the pointer to the physical register
p3 stored in the entry for the architectural register r2 in the
speculative RAT table 208 is replaced by a pointer to the
physical register p5. In FIG. 4C, the pointer to the physical
register p2 stored in the entry for the architectural register r0
in the speculative RAT table 208 is replaced by a pointer to the
physical register p0.

FIG. 4D shows the result after updating the speculative
RAT table 208 is complete, which is identical to the result
shown in FIG. 3B. Accordingly, in FIG. 4D, when a new
instruction such as mov r3,r2 is received, the speculative RAT
table 208 provides the correct pointer for the architectural
register r2 as r2=p5.

The updates may be performed using a single instruction or
a group of instructions at a time. Additionally, the updates
may be performed by reading the instructions in the FIFO
buffer 214 from right to left (i.e., oldest to newest instruc-
tions) or from left to right (i.e., from newest to oldest instruc-
tions). For example, if multiple instructions pending in the
FIFO buffer 214 use the same architectural register but dif-
ferent physical registers, updating can be performed using
instructions from left to right so that the processor 201 can
begin executing new instructions using the partially updated
speculative RAT table 208 without waiting for the entire
speculative RAT table 208 to be updated. In any case, as
entries in the speculative RAT table 208 are updated, the
entries can be flagged as updated, and the processor 201 can
begin executing new instructions using the updated entries.

FIG. 5 shows a processor 201 configured to update the
speculative register address translation table according to the

US 9,405,542 B1

7

present disclosure. The processor 201 includes a renaming
module 202, an architectural register address translation
(RAT) table 204, a physical register bank 206, a speculative
RAT table 208, an execution module 210, an updating module
212, and a FIFO buffer 214.

The processor 201 includes a plurality of architectural
registers. The architectural registers are used by the processor
201 to execute one or more instructions. The processor 201
also includes a plurality of physical registers. The physical
register bank 206 includes the plurality of physical registers.
The processor 201 includes a memory that includes the archi-
tectural RAT table 204, the physical register bank 206, the
speculative RAT table 208, and the FIFO buffer 214.

The renaming module 202 is configured to rename one or
more of the architectural registers to one or more physical
registers when the processor 201 receives a plurality of
instructions for execution. The architectural RAT table 204
stores pointers to the physical registers that store data gener-
ated by retired instructions (i.e., instructions whose execution
is completed by the processor 201). The speculative RAT
table 208 stores pointers to the physical registers that store
data that will be generated by a set of instructions that are
received but not yet executed by the processor 201, where the
data will be used by new instructions not yet received by the
processor 201. The FIFO buffer 214 stores the set of instruc-
tions that are received but not yet executed by the processor
201.

The execution module 210 executes instructions. When an
event such as a mis-predicted branch or exception occurs, the
execution module 210 discards one or more instructions from
the set of instructions received but not executed by the pro-
cessor 201. The updating module 212 updates pointers in the
speculative RAT table 208 in response to the event. The
updated pointers are generated based on pointers stored in the
architectural RAT table 204 at the time of occurrence of the
event and based on one or more instructions from the set of
instructions not discarded by the execution module 210 (i.e.,
instructions pending execution in the FIFO buffer 214).
Accordingly, the execution module 210 can execute a new
instruction subsequent to the event based on the updated
pointers in the speculative RAT table 208.

In one implementation, the updating module 212 updates
the pointers in the speculative RAT table 208 in a time period
equivalent to one instruction cycle of the processor 201. The
updating module 212 updates the pointers in the speculative
RAT table 208 by copying the pointers from the architectural
RAT table 204 to the speculative RAT table 208, and by
updating the pointers copied into the speculative RAT table
208 based on one or more instructions from the set of instruc-
tions not discarded by the execution module 210 (i.e., instruc-
tions pending execution in the FIFO buffer 214).

The FIFO buffer 214 stores instructions, that are received
and renamed but not yet executed by the processor 201, in an
order in which the instructions are received by the renaming
module 202. The updating module 212 may update the point-
ers in the speculative RAT table 208 in one of two ways. The
updating module 212 may update the pointers in the specu-
lative RAT table 208 using one or more instructions from the
set of instructions not discarded by the execution module 210
in the order in which the instructions are stored in the FIFO
buffer 214. Alternatively, the updating module 212 may
update the pointers in the speculative RAT table 208 using
one or more instructions from the set of instructions not
discarded by the execution module 210 in an opposite or
reverse order than the order in which the instructions are
stored in the FIFO buffer 214.

25

40

45

55

8

FIG. 6 shows a method 300 for updating the speculative
register address translation table according to the present
disclosure. At 302, control renames architectural registers to
physical registers when instructions are received. At 304,
after renaming, control queues instructions for execution
(e.g., in FIFO). At 306, control stores, in the architectural
RAT table, pointers to physical registers storing data gener-
ated by retired instructions. At 308, control stores, in the
speculative RAT table, pointers to physical registers storing
data to be generated by instructions received but not yet
retired, for use by new instructions. At 310, control deter-
mines whether an event, such as a mis-predicted branch or
exception, occurred. If an event did not occur, control returns
to 302. At 312, if an event occurred, control discards one or
more instructions pending execution in the FIFO. At 314,
control updates pointers in the speculative RAT table as
described above using pointers in the architectural RAT table
and non-discarded instructions pending execution in the
FIFO. At 316, control executes new instructions using
updated pointers in speculative RAT table. Control returns to
302.

The foregoing description is merely illustrative in nature
and is in no way intended to limit the disclosure, its applica-
tion, or uses. The broad teachings of the disclosure can be
implemented in a variety of forms. Therefore, while this
disclosure includes particular examples, the true scope of the
disclosure should not be so limited since other modifications
will become apparent upon a study of the drawings, the speci-
fication, and the following claims. As used herein, the phrase
at least one of A, B, and C should be construed to mean a
logical (A or B or C), using a non-exclusive logical OR. It
should be understood that one or more steps within a method
may be executed in different order (or concurrently) without
altering the principles of the present disclosure.

In this application, including the definitions below, the
term module may be replaced with the term circuit. The term
module may refer to, be part of, or include an Application
Specific Integrated Circuit (ASIC); a digital, analog, or mixed
analog/digital discrete circuit; a digital, analog, or mixed
analog/digital integrated circuit; a combinational logic cir-
cuit; a field programmable gate array (FPGA); a processor
(shared, dedicated, or group) that executes code; memory
(shared, dedicated, or group) that stores code executed by a
processor; other suitable hardware components that provide
the described functionality; or a combination of some or all of
the above, such as in a system-on-chip.

The term code, as used above, may include software, firm-
ware, and/or microcode, and may refer to programs, routines,
functions, classes, and/or objects. The term shared processor
encompasses a single processor that executes some or all code
from multiple modules. The term group processor encom-
passes a processor that, in combination with additional pro-
cessors, executes some or all code from one or more modules.
The term shared memory encompasses a single memory that
stores some or all code from multiple modules. The term
group memory encompasses a memory that, in combination
with additional memories, stores some or all code from one or
more modules. The term memory may be a subset of the term
computer-readable medium. The term computer-readable
medium does not encompass transitory electrical and electro-
magnetic signals propagating through a medium, and may
therefore be considered tangible and non-transitory. Non-
limiting examples of a non-transitory tangible computer read-
able medium include nonvolatile memory, volatile memory,
magnetic storage, and optical storage.

The apparatuses and methods described in this application
may be partially or fully implemented by one or more com-

US 9,405,542 B1

9

puter programs executed by one or more processors. The
computer programs include processor-executable instruc-
tions that are stored on at least one non-transitory tangible
computer readable medium. The computer programs may
also include and/or rely on stored data.
What is claimed is:
1. A processor comprising:
a plurality of architectural registers of the processor,
wherein the architectural registers are used by the pro-
cessor to execute one or more instructions;
a renaming module configured to rename one or more of
the architectural registers to one or more physical regis-
ters in the processor in response to the processor receiv-
ing a plurality of instructions for execution;
a memory comprising
a first table configured to store pointers to the physical
registers storing data generated in response to the
processor completing execution of one or more
instructions, and

a second table configured to store pointers to the physi-
cal registers storing data to be (i) generated by a set of
instructions received but not executed by the proces-
sor and (ii) used by instructions to be received by the
processor;

an execution module configured to
execute the plurality of instructions, and
discard one or more instructions from the set of instruc-

tions received but not executed by the processor in
response to an event; and

an updating module configured to update pointers in the
second table in response to the event, wherein the
updated pointers are generated based on (i) pointers
stored in the first table at a time of occurrence of the
event, and (ii) one or more instructions from the set of
instructions not discarded by the execution module.

2. The processor of claim 1, wherein the execution module
is configured to execute an instruction subsequent to the event
based on the updated pointers.

3. The processor of claim 1, wherein the updating module
is configured to update the pointers in the second table in a
time period equivalent to one instruction cycle of the proces-
SOf.

4. The processor of claim 1, wherein the updating module
is configured to update the pointers in the second table by (i)
copying the pointers from the first table to the second table,
and (ii) updating the pointers copied into the second table
based on the one or more instructions from the set of instruc-
tions not discarded by the execution module.

5. The processor of claim 1, further comprising a first-in
first-out memory configured to store instructions received but
not executed by the processor in an order in which the instruc-
tions are received by the renaming module.

6. The processor of claim 5, wherein the updating module
is configured to update the pointers in the second table using
the one or more instructions from the set of instructions not
discarded by the execution module in the order in which the
instructions are stored in the first-in first-out memory.

10

15

25

40

45

10

7. The processor of claim 5, wherein the updating module
is configured to update the pointers in the second table using
the one or more instructions from the set of instructions not
discarded by the execution module in an opposite order in
which the instructions are stored in the first-in first-out
memory.

8. A method comprising:

renaming one or more of architectural registers of a pro-

cessor to one or more physical registers in the processor
in response to the processor receiving a plurality of
instructions for execution, wherein the architectural reg-
isters are used by the processor to execute one or more of
the plurality of instructions;

storing, in a first table, pointers to the physical registers

storing data generated in response to the processor com-
pleting execution of one or more instructions;

storing, in a second table, pointers to the physical registers

storing data to be (i) generated by a set of instructions

received but not executed by the processor and (ii) used

by instructions to be received by the processor;
executing the plurality of instructions;

discarding one or more instructions from the set of instruc-

tions received but not executed by the processor in
response to an event; and

updating pointers in the second table in response to the

event, wherein the updated pointers are generated based
on (i) pointers stored in the first table at a time of occur-
rence of the event, and (ii) one or more instructions from
the set of instructions not discarded.

9. The method of claim 8, further comprising executing an
instruction subsequent to the event based on the updated
pointers.

10. The method of claim 8, further comprising updating the
pointers in the second table in a time period equivalent to one
instruction cycle of the processor.

11. The method of claim 8, further comprising updating the
pointers in the second table by (i) copying the pointers from
the first table to the second table, and (ii) updating the pointers
copied into the second table based on the one or more instruc-
tions from the set of instructions not discarded.

12. The method of claim 8, further comprising storing, in a
first-in first-out memory, instructions received but not
executed by the processor in an order in which the instruc-
tions are received.

13. The method of claim 12, further comprising updating
the pointers in the second table, using the one or more instruc-
tions from the set of instructions not discarded, in the order in
which the instructions are stored in the first-in first-out
memory.

14. The method of claim 12, further comprising updating
the pointers in the second table, using the one or more instruc-
tions from the set of instructions not discarded, in an opposite
order in which the instructions are stored in the first-in first-
out memory.

